Sadece Litres-də oxuyun

Kitab fayl olaraq yüklənə bilməz, yalnız mobil tətbiq və ya onlayn olaraq veb saytımızda oxuna bilər.

Kitabı oxu: «Buffon's Natural History, Volume I (of 10)», səhifə 4

Şrift:

PROOF
OF
THE THEORY OF THE EARTH

ARTICLE I.
ON THE FORMATION OF THE PLANETS

Our subject being Natural History, we would willingly dispense with astronomical observations; but as the nature of the earth is so closely connected with the heavenly bodies, and such observations being calculated to illustrate more fully what has been said, it is necessary to give some general ideas of the formation, motion, figure of the earth and other planets.

The earth is a globe of about three thousand leagues diameter; it is situate one thousand millions of leagues from the sun, around which it makes its revolution in three hundred and sixty-five days. This revolution is the result of two forces; the one may be considered as an impulse from right to left, or from left to right, and the other an attraction from above downwards, or beneath upwards, to a common centre. The direction of these two forces, and their quantities, are so nicely combined and proportioned, that they produce an almost uniform motion in an ellipse, very near to a circle. Like the other planets the earth is opaque, it throws out a shadow; it receives and reflects the light of the sun, round which it revolves in a space of time proportioned to its relative distance and density. It also turns round its own axis once in twenty-four hours, and its axis is inclined 66-1/4 degrees on the plane of the orbit. Its figure is spheroidical, the two axes of which differ about 160th part from each other, and the smallest axis is that round which the revolution is made.

These are the principal phenomena of the earth, the result of discoveries made by means of geometry, astronomy, and navigation. We shall not here enter into the detail of the proofs and observations by which those facts have been ascertained, but only make a few remarks to clear up what is still doubtful, and at the same time give our ideas respecting the formation of the planets, and the different changes thro' which it is possible they have passed before they arrived at the state we at present see them.

There have been so many systems and hypotheses framed upon the formation of the terrestrial globe, and the changes which it has undergone, that we may presume to add our conjectures to those who have written upon the subject, especially as we mean to support them with a greater degree of probability than has hitherto been done: and we are the more inclined to deliver our opinion upon this subject, from the hope that we shall enable the reader to pronounce on the difference between an hypothesis drawn from possibilities, and a theory founded in facts; between a system, such as we are here about to present, on the formation and original state of the earth, and a physical history of its real condition, which has been given in the preceding discourse.

Galileo having found the laws of falling bodies, and Kepler having observed that the area described by the principal planets in moving round the sun, and those of the satellites round the planets to which they belong, are proportionable to the time of their revolutions, and that such periods were also in proportion to the square roots of the cubes of their distances from the sun, or principal planets. Newton found that the force which caused heavy bodies to fall on the surface of the earth, extended to the moon, and retained it in its orbit; that this force diminished in the same proportion as the square of the distance increased, and consequently that the moon is attracted by the earth; that the earth and planets are attracted by the sun; and that in general all bodies which revolve round a centre, and describe areas proportioned to the times of their revolution, are attracted towards that point. This power, known by the name of GRAVITY, is therefore diffused throughout all matter; planets, comets, the sun, the earth, and all nature, is subject to its laws, and it serves as a basis to the general harmony which reigns in the universe. Nothing is better proved in physics than the actual existence of this power in every material substance. Observation has confirmed the effects of this power, and geometrical calculations have determined the quantity and relations of it.

This general cause being known, the effects would easily be deduced from it, if the action of the powers which produce it were not too complicated. A single moment's reflection upon the solar system will fully demonstrate the difficulties that have attended this subject; the principal planets are attracted by the sun, and the sun by the planets; the satellites are also attracted by their principal planets, and each planet attracts all the rest, and is attracted by them. All these actions and reactions vary according to the quantities of matter and the distances, and produce great inequalities and irregularities. How is so great a number of connections to be combined and estimated? It appears almost impossible in such a crowd of objects to follow any particular one; nevertheless those difficulties have been surmounted, and calculation has confirmed the suppositions of them, each observation is become a new demonstration, and the systematic order of the universe is laid open to the eyes of all those who can distinguish truth from error.

We feel some little stop, by the force of impulsion remaining unknown; but this, however, does not by any means affect the general theory. We evidently see the force of attraction always draws the planets towards the sun, they would fall in a perpendicular line, on that planet, if they were not repelled by some other power that obliges them to move in a straight line, and which impulsive force would compel them to fly off the tangents of their respective orbits, if the force of attraction ceased one moment. The force of impulsion was certainly communicated to the planets by the hand of the Almighty, when he gave motion to the universe; but we ought as much as possible to abstain in physics from having recourse to supernatural causes; and it appears that a probable reason may be given for this impulsive force, perfectly accordant with the law of mechanics, and not by any means more astonishing than the changes and revolutions which may and must happen in the universe.

The sphere of the sun's attraction does not confine itself to the orbs of the planets, but extends to a remote distance, always decreasing in the same ratio as the square of the distance increases; it is demonstrated that the comets which are lost to our sight, in the regions of the sky, obey this power, and by it their motions, like that of the planets, are regulated. All these stars, whose tracts are so different, move round the sun, and describe areas proportioned to the time; the planets in ellipses more or less approaching a circle, and the comets in narrow ellipses of a great extent. Comets and planets move, therefore, by virtue of the force of attraction and impulsion, which continually acting at one time obliges them to describe these courses; but it must be remarked that comets pass over the solar system in all directions, and that the inclinations of their orbits are very different, insomuch that, although subject like the planets to the force of attraction, they have nothing in common with respect to their progressive or impulsive motions, but appear in this respect independent of each other: the planets, on the contrary, move round the sun in the same direction, and almost in the same plane, never exceeding 7-1/2 degrees of inclination in their planes, the most distant from their orbits. This conformity of position and direction in the motion of the planets, necessarily implies that their impulsive force has been communicated to them by one and the same cause.

May it not be imagined, with some degree of probability, that a comet falling into the body of the sun, will displace and separate some parts from the surface, and communicate to them a motion of impulsion, insomuch that the planets may formerly have belonged to the body of the sun, and been detached therefrom by an impulsive force, and which they still preserve.

This supposition appears to be at least as well founded as the opinion of Leibnitz, who supposes that the earth and planets had formerly been suns; and his system, of which an account will be given in the fifth article, would have been more comprehensive and more agreeable to probability, if he had raised himself to this idea. We agree with him in thinking that this effect was produced at the time when Moses said that God divided light from darkness; for, according to Leibnitz, light was divided from darkness when the planets were extinguished; but in our supposition there was a real physical separation, since the opaque bodies of the planets were divided from the luminous matter which composes the sun.

This idea of the cause of the impulsive force of the planets will be found much less objectionable, when an estimation is made of the analogies and degrees of probability, by which it may be supported. In the first place, the motion of the planets are in the same direction, from West to East, and therefore, according to calculation, it is sixty-four to one that such would not have been the case, if they had not been indebted to the same cause for their impulsive forces.

This, probably, will be considerably augmented by the second analogy, viz. that the inclination of the planes of the orbits do not exceed 7-1/2 degrees; for, by comparing the spaces, we shall find there is twenty-four to one, that two planets are found in their most distant places at the same time, and consequently ⁵, or 7,692,624 to one, that all six would by chance be thus placed; or, what amounts to the same, there is a great degree of probability that the planets have been impressed with one common moving force, and which has given them this position. But what can have bestowed this common impulsive motion, but the force and direction of the bodies by which it was originally communicated? It may therefore be concluded, with great probability, that the planets received their impulsive motion by one single stroke. This likelihood, which is almost equivalent to a certainty, being established, I seek to know what moving bodies could produce this effect, and I find nothing but comets capable of communicating a motion to such vast bodies.

By examining the course of comets, we shall be easily persuaded, that it is almost necessary for some of them occasionally to fall into the sun. That of 1680 approached so near, that at its perihelium it was not more distant from the sun than a sixteenth part of its diameter, and if it returns, as there is every appearance it will, in 2255, it may then possibly fall into the sun; that must depend on the rencounters it will meet with in its road, and of the retardment it suffers in passing through the atmosphere of the sun3.

We may, therefore, presume with the great Newton, that comets sometimes fall into the sun; but this fall may be made in different directions. If they fall perpendicular, or in a direction not very oblique, they will remain in the sun, and serve for food to the fire which that luminary consumes, and the motion of impulsion which they will have communicated to the sun, will produce no other effect than that of removing it more or less, according as the mass of the comet will be more or less considerable; but if the fall of the comet is in a very oblique direction, which will most frequently happen, then the comet will only graze the surface of the sun, or slightly furrow it; and in this case it may drive out some parts of matter to which it will communicate a common motion of impulsion, and these parts so forced out of the body of the sun, and even the comet itself, may then become planets, and turn round this luminary in the same direction, and in almost the same plane. We might perhaps calculate what quantity of matter, velocity, and direction a comet should have, to impel from the sun an equal quantity of matter to that which the six planets and their satellites contain; but it will be sufficient to observe here, that all the planets, with their satellites, do not make the 650th part of the mass of the sun,4 because the density of the large planets, Saturn and Jupiter, is less than that of the sun; and although the earth be four times, and the moon near five times more dense than the sun, they are nevertheless but as atoms in comparison with his extensive body.

However inconsiderable the 650th part may be, yet it certainly at first appears to require a very powerful comet to separate even that much from the body of the sun; but if we reflect on the prodigious velocity of comets in their perihelion, a velocity so much the greater as they approach nearer the sun; if, besides, we pay attention to the density and solidity of the matter of which they must be composed, to suffer, without being destroyed, the inconceivable heat they endure; and consider the bright and solid light which shines through their dark and immense atmospheres, which surround, and must obscure them, it cannot be doubted that the comets are composed of extremely solid and dense matters, and that they contain a greater quantity of matter in a small compass; that consequently a comet of no extraordinary bulk may have sufficient weight and velocity to displace the sun, and give a projectile motion to a quantity of matter, equal to the 650th part of the mass of this luminary. This perfectly agrees with what is known concerning the density of planets, which always decreases as their distance from the sun is increased, they having less heat to support; so that Saturn is less dense than Jupiter, and Jupiter much less than the earth; therefore if the density of the planets be, as Newton asserts, proportionable to the quantity of heat which they have to support, Mercury will be seven times more dense than the earth, and twenty-eight times denser than the sun; and the comet of 1680 would be 28,000 times denser than the earth, or 112,000 times denser than the sun, and by supposing it as large as the earth, it would contain nearly an equal quantity of matter to the ninth part of the sun, or by giving it only the 100th part of the size of the earth, its mass would still be equal to the 900th part of the sun. From whence it is easy to conclude, that such a body, though it would be but a small comet, might separate and drive off from the sun a 900th or a 650th part, particularly if we attend to the immense velocity with which comets move when they pass in the vicinity of the sun.

Besides this, the conformity between the density of the matter of the planets, that of the sun deserves some attention. It is well known, that, both on and near the surface of the earth, there are some matters 14 or 1500 times denser than others. The densities of gold and air are nearly in this relation. But the internal parts of the earth and planets are composed of a more uniform matter, whose comparative density varies much less; and the conformity in the density of the planets and that of the sun is such, that of 650 parts which compose the whole of the matter of the planets, there are more than 640 of the same density as the matter of the sun, and only ten parts out of these 650 which are of a greater density, for Saturn and Jupiter are nearly of the same density as the sun, and the quantity of matter which these planets contain, is at least 64 times greater than that of the four inferior planets, Mars, the Earth, Venus, and Mercury. We must therefore admit, that the matter of which the planets are generally composed is nearly the same as that of the sun, and that consequently the one may have been separated from the other.

But it may be said, if the comet, by falling obliquely on the sun, drove off the matter which compose the planets, they, instead of describing circles of which the sun is the centre, would, on the contrary, at each revolution, have returned to the same point from whence they departed, as every projectile would which might be thrown off with sufficient force from the surface of the earth, to oblige it to turn perpetually: for it is easy to demonstrate that such, in that instance, would be the case, and therefore that the projection of the planets from the sun cannot be attributed to the impulsion of a comet.

To this I reply, that the matter which composes the planets did not come from the sun, in ready formed globes, but in the form of torrents, the motion of the anterior parts of which were accelerated by that of the posterior; and that the attraction of the anterior parts also accelerated the motion of the posterior, and that this acceleration produced by one or other of these causes, or perhaps by both, might be so great as to change the original direction of the motion occasioned by the impulse of the comet, from which cause a motion has resulted, such as we at present observe in the planets; especially when it is considered the sun is displaced from its station by the shock of the comet. An example will render this more reasonable; let us suppose, that from the top of a mountain a musket ball is discharged, and that the strength of the powder was sufficient to send it beyond the semi-diameter of the earth, it is certain that this ball would pass round the earth, and at each revolution return to the spot from whence it had been discharged: but, if instead of a musket-ball, we suppose a rocket had been discharged, wherein the action of the fire being durable, would greatly accelerate the motion of impulsion; this rocket, or rather the cartouch which contained it, would not return to the same place like the musket-ball, but would describe an orbit, whose perigee would be much farther distant from the earth, as the force of acceleration would be greater, and have changed the first direction.

Thus, provided there had been any acceleration in the motion of impulsion communicated to the torrent of matter by the fall of the comet, it is probable that the planets formed in this torrent, acquired the motion which we know they have in the circles and ellipsis of which the sun is the centre and focus.

The manner in which the great eruptions of volcanos are made, may afford us an idea of this acceleration of motion. It has been remarked that when Vesuvius begins to roar and eject the inflamed matter it contains, the first cloud has but a small degree of velocity, but which is soon accelerated by the impulse of the second; the second by the action of a third, and so on, until the heavy mass of bitumen, sulphur, cinders, melted metal, and huge stones, appear like massive clouds, and although they succeed each other nearly in the same directions, yet they greatly change that of the first, and drive it far beyond what it would have reached of itself.

In answer to this objection, it may be further observed, that the sun having been struck by the comet, received a degree of motion by the impulse, which displaced it from its former situation; and that although this motion of the sun is at present too little sensible for the notice of astronomers, nevertheless it may still exist, and the sun describe a curve round the centre of gravity of the whole system and if this is so, as I presume it is, we see perfectly that the planets, instead of returning near the sun at each revolution, will, on the contrary, have described orbits, the points of the perihelion of which will be as far distant from the sun, as it is itself from the place it originally occupied.

It may also be said, that if this acceleration of motion is made in the same direction, no change in the perihelion will be produced: but can it be thought that in a torrent, the particles of which succeed each other, there has been no change of direction; it is, on the contrary, very probable that a considerable change did take place, sufficient to cause the planets to move in the course they at present occupy.

It may be further urged, that if the sun had been displaced by the shock of a comet, it would move uniformly, and that hence this motion being common to the whole system, no alteration was necessary; but might not the sun before the shock have had a motion round the centre of the cometry system, to which primitive motion the stroke of the comet may have added or diminished? and would not that fully account for the actual motion of the planets?

If these suppositions are not admitted, may it not be presumed, that in the stroke of the comet against the sun, there was an elastic force which raised the torrent above the surface of the sun, instead of directly impelling it? which alone would be sufficient to remove the perihelion, and give the planets the motion they have retained. This supposition is not without probability, for the matter of the sun may possibly be very elastic, since light, the only part of it we are acquainted with, seems, by its effects, to be perfectly so. I own that I cannot say whether it is by the one or the other of these reasons, that the direction of the first motion of the impulse of the planets has changed, but they suffice to shew that such an alteration is not only possible but even probable, and that is sufficient for my purpose.

But, without dwelling any longer on the objections which might be made, I shall pursue the subject, and draw the fair conclusions on the proofs which analogies might furnish in favour of my hypothesis: let us, therefore, first see what might happen when these planets, and particularly the earth, received their impulsive motion, and in what state they were after having been separated from the sun. The comet having, by a single stroke, communicated a projectile motion to a quantity of matter equal to the 650th part of the sun's mass, the light particles would of course separate from the dense, and form, by their mutual attraction, globes of different densities: Saturn being composed of the most gross and light parts, would be the most remote from the sun: Jupiter being more dense than Saturn, would be less distant, and so on. The larger and least solid planets are the most remote, because they received an impulsive motion stronger than the smallest, and more dense: for, the force of impulsion communicating itself according to the surface, the same stroke would have moved the grosser and lighter parts of the matter of the sun with more velocity than the smallest and more weighty; a separation therefore will be made of the dense parts of different degrees, so that the density of the sun being equal to 100, that of Saturn will be equal to 67, that of Jupiter to 94-1/2, that of Mars to 200, that of the Earth to 400, that of Venus to 800, and that of Mercury to 2800. But the force of attraction not communicating like that of impulsion, according to the surface, but acting on the contrary on all parts of the mass, it will have checked the densest portions of matter; and it is for this reason that the densest planets are the nighest the sun, and turn round that planet with greater rapidity than the less dense planets, which are also the most remote.

Jupiter and Saturn, which are the largest and principal planets of the solar system, have retained the relation between their density and impulsive motions, in the most exact proportions; the density of Saturn is to that of Jupiter as 67 to 94-1/2 and their velocities are nearly as 88-2/3 to 120-1/72, or as 67 to 90-11/16; it is seldom that pure conjectures can draw such exact relations. It is true, that by following this relation between the velocity and density of planets, the density of the earth ought to be only as 206-7/18, and not 400, which is its real density; from hence it may be conceived, that our globe was formerly less dense than it is at present. With respect to the other planets, Mars, Venus, and Mercury, as their densities are known only by conjecture, we cannot be certain whether this circumstance will destroy or confirm our hypothesis. The opinion of Newton is, that density is so much the greater, as the heat to which the planet is exposed is the stronger; and it is on this idea that we have just said that Mars is one time less dense than the Earth, Venus one time, Mercury seven times, and the comet in 1680, 28,000 times denser than the earth: but this proportion between the density of the planets and the heat which they sustain, seems not well founded, when we consider Saturn and Jupiter, which are the principal objects; for, according to this relation between the density and heat, the density of Saturn would be about 4-7/18, and that of Jupiter as 14-17/22, instead of 67 and 94-1/2, a difference too great to be admitted, and must destroy the principles upon which it was founded. Thus, notwithstanding the confidence which the conjectures of Newton merit, I can but think that the density of the planets has more relation with their velocity than with the degree of heat to which they are exposed. This is only a final cause, and the other a physical relation, the preciseness of which is remarkable in Jupiter and Saturn: it is nevertheless true, that the density of the earth, instead of being 206-7/8, is found to be 400, and that consequently the terrestrial globe must be condensed in this ratio of 206-7/8 to 400.

But have not the condensations of the planets some relation with the quantity of the heat of the sun which they sustain? If so, Saturn, which is the most distant from that luminary, will have suffered little or no condensation; and Jupiter will be condensed from 90-11/16 to 94-1/2. Now the heat of the sun in Jupiter being to that of the sun upon the earth as 14-17/22 are to 400, the condensations ought to be in the same proportion. For instance, if Jupiter be condensed, as 90-11/16 to 94-1/2, and the earth had been placed in his orbit, it would have been condensed from 206-7/8 to 215-990/1451, but the earth being nearer the sun, and receiving a heat, whose relation to that which Jupiter receives is from 400 to 14-17/22, the quantity of condensation it would have experienced on the orbit of Jupiter by the proportion of 400 to 14-17/22, which gives nearly 234-1/3 for the quantity which the earth would be condensed. Its density was 206-7/8, by adding the quantity of its acquired condensation, we find 400-7/8 for its actual density, which nearly approaches the real density 400, determined to be so by the parallax of the moon. As to other planets, I do not here pretend to give exact proportions, but only approximations, to point out that their densities have a strong relation to their velocity in their respective orbits.

The comet, therefore, by its oblique fall upon the surface of the sun, having driven therefrom a quantity of matter equal to the 650th part of its whole mass; this matter, which must be considered in a liquid state, will at first have formed a torrent, the grosser and less dense parts of which will have been driven the farthest, and the smaller and more dense, having received only the like impulsion, will remain nearest its source; the force of the sun's attraction would inevitably act upon all the parts detached from him, and constrain them to circulate around his body, and at the same time the mutual attraction of the particles of matter would form themselves into globes at different distances from the sun, the nearest of which necessarily moving with greater rapidity in their orbits than those at a distance.

But another objection may be started, and it may be said, if the matter which composes the planets had been separated from the sun, they, like him, would have been burning and luminous bodies, not cold and opaque, for nothing resembles a globe of fire less than a globe of earth and water; and by comparison, the matter of the earth and planets is perfectly different from that of the sun?

To this it may be answered, that in the separation the matter changed its form, and the light or fire was extinguished by the stroke which caused this motion of impulsion. Besides, may it not be supposed that if the sun, or a burning star, moved with such velocity as the planet, that the fire would soon be extinguished; and that is the reason why all luminous stars are fixed, and that those stars which are called new, and which have probably changed places, are frequently extinguished and lost? This remark is somewhat confirmed by what has been observed in comets; they must burn to the centre when they pass to their perihelium: nevertheless they do not become luminous themselves, they only exhale burning vapours, of which they leave a considerable part behind them in their course.

I own, that in a medium where there is very little or no resistance, fire may subsist and suffer a very great motion without being extinguished: I also own, that what I have just said extends only to the stars which totally disappear, and not to those which have periodical returns, and appear and disappear alternately without changing place in the heavens. The phenomena of these stars has been explained in a very satisfactory manner by M. de Maupertuis, in his discourse on the figures of the planets. But the stars which appear and afterwards disappear entirely, must certainly have been extinguished, either by the velocity of their motion, or some other cause. We have not a single example of one luminous star revolving round another; and among the number of planets which compose our system, and which move round the sun with more or less rapidity, there is not one luminous of itself.

It may also be added, that fire cannot subsist so long in the small as in large masses, and that the planets must have burnt for some time after they were separated from the sun, but were at length extinguished for want of combustible matter, as probably would be the sun itself, and for the same reason; but in a length of time as far beyond that which extinguished the planets, as it exceeds in quantity of matter. Be this as it may, the matter of which the planets are formed being separated from the sun, by the stroke of a comet, that appears a sufficient reason for the extinction of their fires.

3.Vide Newton, 2d edit. page 525.
4.Vid. Newton, page 405.