Kitabı oxu: «Зачем нужна геология. Краткая история прошлого и будущего нашей планеты», səhifə 3

Şrift:

Однако осадочные породы содержали ключи к решению этой задачи. Задолго до того, как Чарлз Дарвин писал об эволюции, ученые признавали, что жизнь на планете со временем менялась. Куда бы они ни смотрели, обнаруживалась одна и та же история. Окаменелости в самых молодых породах в верхней части осадочных толщ походили на живущие формы, однако окаменелости из нижних, более старых слоев часто оказывались мелкими и совершенно несходными со всеми известными растениями и животными. А в некоторых местах ниже пород, содержащих незнакомые окаменелости, лежали слои, полностью лишенные признаков животной или растительной жизни. Эти слои были еще древнее.

Рисунок 1. Геохронологическая шкала с датами в миллионах лет от нынешнего момента. Обратите внимание на изменение масштаба в момент 700 миллионов лет в протерозойском эоне. Здесь показаны только крупные подразделы временной шкалы; геологи выделяют много более мелких интервалов. (На основе последних данных Международной комиссии по стратиграфии).


Одним из первых, кто осознал практическое применение этой последовательности, был британский землемер Уильям Смит. Занимался он межеванием земель и обмером шахт, но его страстью была геология: путешествуя по делам по стране, он делал заметки о местной геологии и собирал окаменелости. Он обратил внимание, что порядок, в котором сообщества организмов меняются при переходе от старых пород к более молодым, сохраняется, даже если сами породы выглядят по-разному. За полвека с лишним до того, как Дарвин опубликовал свое «Происхождение видов», Смит с гордостью показывал друзьям свою коллекцию окаменелостей, которую организовал по относительному возрасту, а не по сходству организмов, как обычно делали современные ему коллекционеры. Хотя Смит этого и не осознавал, он использовал эволюцию, зафиксированную окаменелостями, чтобы установить связь между осадочными породами, образовавшимися в одно время, но в разных и отдаленных друг от друга местах. Цель – глобальная относительная шкала времени – стала на шаг ближе.

Последователи Стенсена и Смита постепенно строили геологическую шкалу времени, пока не заполнили подразделы, показанные на рисунке 1 – от кембрийского периода до нашего времени. Названия, которые они присваивали крупным подразделам шкалы (в частности, периодам), обычно отсылали к названиям географических регионов, изобиловавших породами соответствующего времени, которые содержали окаменелости, и где их впервые детально описали – например юрский период назван по горному массиву Юра́ в Швейцарии, а ордовикский и силурийский – по названиям двух древних племен, живших в разных частях Уэльса, ордовиков и силуров. Все это было сделано до открытия радиоактивности, и ученые не представляли, насколько осваиваемый ими промежуток времени масштабен на самом деле. Кроме того, поскольку относительная шкала была основана на окаменелостях, то ниже кембрийского периода она оставалась пустой9. Более старые породы для первых геологов не содержали вообще никаких окаменелостей (как мы увидим, жизнь на Земле существовала задолго до этого, однако окаменелости тех времен в основном мелкие, редкие, и их легко не заметить). Эти древние и с виду безжизненные породы назвали просто «докембрием».

Такая первая относительная хронологическая шкала фактически была летописью эволюции морской жизни. Хотя в прошлом, как и сегодня, формы жизни в разных географических местах различались, общий порядок эволюции, отраженный в летописи окаменелостей, достаточно ясен, чтобы мы могли правильно расположить осадочные породы в любой точке мира, если они содержат окаменелости. Например, девонские скалы в Европе содержат ископаемые сообщества, которые весьма похожи на такие же сообщества из девонских пород Америки и Африки. Это очень помогло в создании временной шкалы, потому что на Земле нет одного места, где бы нашлась непрерывная последовательность осадочных слоев с породами от кембрия до настоящего времени (или хотя бы значительная часть такого промежутка). Временную шкалу приходится строить постепенно путем детального изучения небольших фрагментов такой географической колонки (как ее часто называют), расположенных в разных местах, и исследовать корреляцию там, где есть очевидное перекрытие. Поначалу такой подход может показаться несистематическим, но на деле он оказался крайне успешным, о чем свидетельствует шкала на рисунке 1. Наше понимание эволюции настолько полно, что опытный геолог может подойти к выходу осадочных пород в любой точке мира, и если он найдет несколько окаменелостей, то довольно точно определит место породы на геологической шкале времени.

Этого удалось добиться несмотря на то, что в качестве окаменелостей сохранилась лишь небольшая часть видов, когда-либо существовавших на планете. Не так-то просто стать ископаемым. Согласно большинству оценок, в горных породах сохранилось менее 1 % видов, и несложно понять, почему. Даже в самых благоприятных условиях – на тихом морском дне с медленно накапливающимися илистыми отложениями – большинство мертвых организмов до сохранения сгниют или растворятся, или вообще еще раньше будут съедены падальщиками. Обычно сохраняются лишь твердые части – раковины, кости и зубы, да и то часто в виде фрагментов. Проблема усугубляется тем, что иногда трудно догадаться о целом по части. Окаменелые зубы акул встречались достаточно регулярно, однако долгое время – несмотря на то, что акулы всем известны – никто не знал, что это за окаменелости, поскольку они были изолированными предметами, не связанными с чем-то иным. Даже в том случае, когда окаменелость сохраняется целиком, эрозия или метаморфизм могут впоследствии уничтожить ту осадочную породу, которая ее содержит. Возникающие пробелы в палеонтологической летописи беспокоили многих ученых, включая Дарвина.

И тем не менее, даже с ограниченной выборкой окаменелых видов осадочные горные породы удивительно подробно рассказывают о том, как менялась жизнь на планете. Первые геологи проводили границы между эрами и периодами и даже между более мелкими подразделами временной шкалы в тех местах геологической колонки, где наблюдали быстрое изменение типов сохранившихся ископаемых. Названия трех эр, показанных на рисунке 1 – палеозойская, мезозойская и кайнозойская – взяты из греческого языка и означают «древняя жизнь», «средняя жизнь» и «новая жизнь», поскольку на границах между ними происходят резкие перемены в окаменелостях, и по мере приближения к настоящему сохраняющиеся формы жизни становятся все более знакомыми. Эти границы легко проследить всюду, где встречаются породы соответствующего возраста, и сейчас мы знаем, что они фиксируют короткие периоды масштабных вымираний, когда значительные доли организмов, населяющих океаны, исчезали в результате катастрофических нарушений среды. За этими вымираниями относительно быстро (с геологической точки зрения) следовало развитие и распространение новых форм жизни. Границы между геологическими периодами тоже отмечены не такими радикальными, но все же серьезными переменами в составе морских организмов.

Долгое время не удавалось определить время этих событий. К концу XIX века над способами измерения геологического времени уже работали ученые всех специальностей. Физики хотели узнать возраст Земли; геологи – возраст отдельных горных пород и продолжительность различных участков временной шкалы. Предлагались самые разные оригинальные подходы, однако большинство из них опирались на сомнительные исходные предположения, и все они приводили к колоссальным неопределенностям. Самые радикальные оценки для возраста Земли лежали в диапазоне от нескольких десятков миллионов лет до, возможно, 100 миллионов лет. Просто не существовало надежного способа понять, какой промежуток времени представляют докембрийские породы, или узнать что-нибудь о скорости эволюции.

Все изменилось с открытием радиоактивности в 1896 году. Как только обнаружилось, что радиоактивные изотопы распадаются с постоянной скоростью, стало очевидно, что это явление можно использовать для геологического датирования. Первым этим занялся один из пионеров исследований радиоактивности физик-экспериментатор Эрнест Резерфорд. Он попросил коллег-геологов передать ему породы, которые они считали очень старыми. По радиоактивным изотопам в этих образцах он установил, что им примерно 500 миллионов лет. Этот поразительный результат потряс научный мир: ведь если результат Резерфорда был верен, то Земле больше 500 миллионов лет, то есть она гораздо старше, чем принято было думать.

По сегодняшним меркам эксперименты Резерфорда были грубыми. С тех пор геохронология – наука о датировании горных пород – добилась больших успехов. Принцип остался тем же самым: мы основываемся на факте, что радиоактивные изотопы распадаются с постоянной скоростью. Однако современные аналитические инструменты способны производить очень точные измерения с очень небольшим количеством материалов, и даты, полученные в результате, тоже очень точны. Все данные о границах на рисунке 1 основаны на радиоизотопном датировании (как обычно называют этот метод), и этот же метод показал, что возраст нашей планеты – от 4,5 до 4,6 миллиарда лет10. Время – настолько важная часть расшифровки прошлого, что стоит потратить несколько страниц, чтобы понять, как работает радиоизотопное датирование (иначе – радиометрическое датирование).

Прежде всего нужно сказать, что геологическое время – необъятный промежуток. Четыре с половиной миллиарда лет – срок, который человеку очень трудно осознать. В нашу эпоху миллионеров и дотаций в триллионы долларов само это число не кажется чем-то необычным, однако оказывается колоссальным, если вдуматься в эту цифру. Наш вид Homo sapiens существует примерно 200 000 лет (возможно, немного меньше) – весьма долгое время по большинству стандартов. Однако это мизерная часть возраста Земли – примерно сорок миллионных. Часто проводят аналогию: изображают историю земли в виде воображаемого трехчасового фильма. Три часа для фильма – очень много, однако даже в этом случае Homo sapiens появляется только в последние полсекунды.

Одно из следствий огромного масштаба геологического времени – то, что многие геологические процессы, протекающие с ничтожной скоростью, могут вызвать колоссальные изменения. Как мы увидим далее, литосферные плиты двигаются со скоростью всего несколько сантиметров в год; однако умножьте эту величину на сотни миллионов лет – и окажется, что так могут открываться и закрываться целые океанические бассейны. Целые горные хребты за это время могут подняться, а затем снова исчезнуть в результате эрозии.

Однако вернемся к деталям методов датирования, которые применяют для измерения гигантских промежутков времени: к счастью, в периодической таблице есть много элементов с природными радиоактивными изотопами, и множество природных материалов содержат один или несколько этих изотопов в том или ином количестве. Это значит, что в принципе при разумном отборе образцов датировать можно практически всё. Однако каждая из разработанных учеными процедур датирования имеет определенные ограничения. Например, радиоуглеродное датирование (вероятно, наиболее известный из геохронологических методов) можно использовать только для датировки органического материала, который был частью живого растения или животного, причем материал должен быть моложе 50 тысяч лет. Ограничение вызвано тем, что метод основан на радиоактивном распаде радиоуглерода (углерода-14), который распадается очень быстро. (Число в названии изотопа означает общее количество протонов и нейтронов в ядре атома – в случае углерода-14 в ядре 6 протонов и 8 нейтронов. В научной литературе оно обычно указывается индексом сверху, то есть 14С, однако я буду использовать более длинное, но более удобное для чтения название углерод-14).

Чаще всего методы радиоизотопного датирования, применяемые для горных пород, задействуют изотопы относительно распространенных и известных элементов, например, калия и урана, однако используются также и некоторые более экзотические элементы – например, рубидий, рений и самарий. У каждого из методов есть свои достоинства и недостатки, и выбор самого полезного метода диктуется обстоятельствами – например, геологическими условиями нахождения образца. Самый частый метод для древних пород, с которым мы будем регулярно сталкиваться в этой книге, основан на цепочках распада урана, заканчивающихся изотопами свинца. Одна из причин распространенности уран-свинцового метода датирования – тот факт, что во многих горных породах содержится минерал циркон, который одновременно и достаточно богат ураном, и стоек к изменениям, к тому же его легко извлечь для анализа.

Как можно догадаться по названию, циркон содержит цирконий, а из его химической формулы ZrSiO4 видно, что другими его основными компонентами являются кремний и кислород. Уран присутствует только в следовых количествах, но его концентрация все же гораздо выше, чем в большинстве других минералов, потому что атомы урана легко занимают место циркония в структуре этого вещества. Циркон – твердый и плотный минерал, обычно красноватого цвета; его мелкие зерна повсеместно встречаются в магматических породах. Более редкие крупные кристаллы иногда продают в качестве полудрагоценных камней, однако для геологов настоящая ценность циркона заключается в пользе для датирования. Он настолько устойчив к изменениям, что даже в тех случаях, когда горные породы погружаются вглубь Земли, нагреваются и подвергаются метаморфизму, кристаллы циркона нередко остаются целыми, сохраняя при этом возраст исходной породы. Когда на поверхности планеты породы наподобие гранитов подвергаются выветриванию, многие содержащиеся в них минералы растворяются или превращаются в глину, однако кристаллы циркона выживают. Поэтому песок на пляже неизменно содержит зерна этого минерала.

Наряду с уран-свинцовым методом мы встретимся с другим широко применяемым способом радиоизотопного датирования, который использует распад калия до одного из изотопов аргона. Минерала, который был бы эквивалентен циркону, у калия нет, однако это относительно распространенный на планете элемент, и для датирования можно использовать многие обычные минералы – например, некоторые разновидности слюды и полевого шпата. По различным техническим причинам метод калий-аргонового датирования полезен для более молодых частей геологической летописи.

С помощью уран-свинцового и калий-аргонового методов было получено большинство дат на современной геологической шкале. В тех случаях, когда были доступны подходящие образцы, оба метода применяли одновременно: перекрестная проверка независимыми методами гарантирует точность результатов. Однако нужно как-то справиться с проблемой, касающейся показанных на рисунке 1 возрастов: существуют значительные трудности при применении уран-свинцового и калий-аргонового методов к осадочным породам, но – как мы видели ранее – основой для геохронологической шкалы являются окаменелости, а их находят как раз в осадочных породах. Как же тогда получили соответствующий возраст?

Решение становится яснее, если мы рассмотрим образование осадочных пород. Многие минеральные зерна, из которых они состоят, некогда были частью других пород на материках; но из-за эрозии они покинули родительские породы, попали в море, а затем осели на дно. Поэтому датирование этих минералов позволит определить возраст материнских пород, а не самих осадочных пород. Кроме того, минералы в осадочных породах, которые осаждаются непосредственно из морской воды (и поэтому подходят для определения их возраста) не содержат того количества урана, калия или других радиоактивных изотопов, которое нужно, чтобы достоверно определить возраст. В эту категорию попадает карбонат кальция – широко распространенный компонент океанических отложений. Это один из случаев, когда мать-природа оказалась не особенно благосклонна к геологам.

Очевидно, что с проблемой как-то удалось справиться: ведь точные радиометрические данные существуют для множества осадочных пород. Каким же образом? Дело в том, что Земля – очень активная планета с вулканами, которые почти непрерывно извергают вулканический пепел. Именно это происходило в начале 2010 года, когда облако пепла от вулкана Эйяфьядлайёкюдль в Исландии закрыло воздушное сообщение в Европе. Извержение Эйяфьядлайёкюдля по мировым стандартам было слабым, однако оно показало, как пепел от вулкана может разлететься по целому региону. В результате самых крупных извержений пепел распространяется по всему миру, а когда оседает на морское дно, то образует легко опознаваемые слои. Такие слои пепла – маркеры почти мгновенных (с геологической точки зрения) событий, а поэтому они оказываются идеальными кандидатами на датирование. К счастью, они часто содержат кристаллы циркона или минералы, пригодные для использования калий-аргонового метода.

Слои вулканического пепла настолько многочисленны, что сегодня являются самым важным материалом для датирования осадочных пород. Самые мощные вулканы, которые дают больше всего пепла, появляются в основном на окраинах океанских бассейнов в результате тектонических процессов. Вспомните вулканы Индонезии или Анд. Даже если отдельные вулканы извергаются лишь время от времени, накапливающиеся в соответствующих регионах осадки пронизаны слоями пепла. Если важно знать возраст конкретного уровня в толще осадков (например, уровня, который означает какую-то геологическую границу), а подходящего слоя пепла в идеально подходящем положении нет, обычно можно провести интерполяцию между близко расположенными слоями.

В качестве примера можно привести последовательность пластов известняка в южном Китае, которая проходит через границу между пермским и триасовым периодом. Окаменелости показывают, что эта граница, которая одновременно разделяет палеозойскую и мезозойскую эру (рисунок 1), отмечает самое массовое вымирание в истории Земли, когда внезапно исчезло более 90 % видов, живших в океанах. Точная датировка такого события крайне важна, однако известняки нельзя датировать напрямую. К счастью, они расположены в районе с высокой вулканической активностью и содержат многочисленные слои пепла. В 1990-х годах группа геохронологов из Массачусетского технологического института (MIT) взяла образцы пепла выше и ниже нужной границы, тщательно выбрала содержащиеся в них кристаллики циркона и измерила возраст циркона с помощью уран-свинцового метода. Результаты показаны на рисунке 2 и говорят о том, что фрагмент отложений толщиной в несколько метров, перекрывающий границу, образовался всего лишь за два миллиона лет. Даты слоев пепла также позволяют точно определить возраст границы – 251,4 миллиона лет. Возможно, не менее важно и то, что с помощью датирования близко расположенных слоев пепла исследователи смогли сделать вывод, что это массовое вымирание происходило в течение короткого промежутка времени – менее миллиона лет.


Рисунок 2. Осадочные слои на пермско-триасовой (П-Т) границе в южном Китае. Преобладающий тип горных пород здесь – известняк; слои пепла показаны серыми полосками. Возраст слоев пепла, основанный на уран-свинцовом методе датирования кристаллов циркона, указан в миллионах лет. Слой пепла, расположенный непосредственно ниже официальной П-Т границы, дает ее возраст. Показано расположение пермских (p) и триасовых (t) окаменелостей. Обратите внимание, что непосредственно над П-Т границей есть небольшой интервал со смешанными окаменелостями. Это обычная особенность осадочных пород: роющие организмы и течения перемешивают отложения. Показанная колонка представляет чуть более 18 метров слоев пород. (На основе данных Bowring et al. 1998).


Я еще ничего не сказал о докембрийской части временной шкалы. Радиоизотопное датирование раскрыло ее истинные масштабы: ученые, создававшие ранние версии шкалы времени по окаменелостям, поразились бы, узнав, что эта часть составляет более 85 % истории планеты. Из-за отсутствия окаменелостей породы докембрия можно поместить в шкалу только с помощью прямого радиоизотопного датирования. На рисунке 1 показано всего несколько основных подразделов этой части шкалы – катархей, архей и протерозой. Границы между этими подразделами частично произвольны, а частично основаны на признанных событиях, которые повлияли на Землю в глобальном масштабе. Несмотря на древность докембрийских пород, они представляют целый гобелен с обширными и временами удивительными сведениями, и в последующих главах мы это увидим. Они показывают мир, который на протяжении миллиардов лет отличался от мира, который известен нам сегодня.

Это краткое введение призвано дать обзор того, каким образом геологи используют различные виды информации, хранящейся в горных породах, чтобы расшифровать события из прошлого нашей планеты и определить их хронологию. Эта работа продолжается, и новые открытия постоянно меняют различные аспекты истории. В последнее время акцент делается на изучении времен и событий в прошлом, которые имеют отношение к тому, что может происходить в будущем. Это особенно важно для понимания проблем, которые повлияют на ближайшее будущее человеческого общества – например, глобального потепления. Но прежде чем обратиться к таким проблемам, в следующей главе мы вернемся в самое начало – на 4,5 миллиарда лет назад – чтобы изучить происхождение планеты и самые первые дни её жизни. На Земле не осталось пород тех времен: их разрушили геологические процессы. Однако у нас есть камни из космоса. Как и земным камням, им есть что рассказать.

9.«Немые» толщи существуют не только в докембрии. Для сохранения пригодной для определения возраста фауны требуется ряд условий, которые соблюдаются далеко не всегда. – Прим. науч. ред.
10.Следует отметить, что на Земле не найдено пород старше 4 млрд лет. Возраст Земли определялся по возрасту метеоритного вещества, и только недавно на Земле были обнаружены зерна циркона (очень устойчивого минерала), отдельные участки которых формировались 4.37 млрд. лет назад. – Прим. науч. ред.
8,69 ₼
Yaş həddi:
16+
Litresdə buraxılış tarixi:
04 iyun 2022
Yazılma tarixi:
2011
Həcm:
400 səh. 34 illustrasiyalar
ISBN:
978-5-04-169267-4
Müəllif hüququ sahibi:
Эксмо
Yükləmə formatı:
epub, fb2, fb3, ios.epub, mobi, pdf, txt, zip

Bu kitabla oxuyurlar