Kitabı oxu: «Теория игр: Как нами правят чужие стратегии», səhifə 3
4
Игры, в которые играют люди
В следующей главе мы узнаем о нескольких играх – и забавных, и познавательных, расширим наш игровой лексикон, узнаем кое-что новое и поучимся тому, как мыслить стратегически, а помимо этого познакомимся с тем, кого я считаю «Стратегом года». Итак, играем!
Игра 1. Пиратская забава
«Доверять ненадежным можно всегда. Ты всегда можешь положиться на то, что они ненадежны. А вот надежным… о, им ни в коем случае нельзя доверять».
Капитан Джек Воробей. «Пираты Карибского моря»
Банда пиратов после тяжелого рабочего дня возвращается домой и несет 100 золотых дублонов, которые предстоит разделить между пятью лучшими пиратами: это Эйб, Бен, Кэл, Дон и Эрн. Эйб – глава банды, а Эрн – подчиненный самого низкого ранга.
Несмотря на иерархию, группа демократична, и именно потому добычу решают делить по следующему принципу. Эйб предлагает формулу распределения, и все пираты (включая его самого) за нее голосуют. Если большинство ее одобряет, идея воплощается в жизнь – и все, конец игры; а если нет, то Эйба бросают в океан (даже пираты-демократы довольно непокорны). И если Эйба больше с нами нет, настает очередь Бена. Он предлагает, пираты голосуют снова. Обратите внимание: теперь возможно равенство голосов. Предположим, что в таком случае предложение отвергается, а того, кто его выдвинул, бросают в океан (хотя есть и другая версия игры, при которой за предложившим остается право решающего голоса). Итак, если предложение Бена получает одобрение большинства пиратов, его идею воплощают в жизнь; если нет, его бросают в океан, и свое предложение для коллектива (уже не столь большого) будет выдвигать Кэл. И так далее.
Игра продолжается до тех пор, пока какое-либо предложение не примут большинством голосов. Если этого не случится, Эрн остается последним пиратом и забирает все 100 дублонов.
Прежде чем читать дальше, пожалуйста, остановитесь и немного подумайте о том, чем должна закончиться эта игра. И учтите: пираты умны и жадны.
Математическое решение
Математики решают этот вопрос при помощи «обратной индукции» – идут от конца к началу. Предположим, что мы находимся на той стадии игры, когда отвергнуты идеи и Эйба, и Бена, и Кэла – да, Кэл тоже подкачал. Остались только Дон и Эрн, и теперь решение очевидно: Дон должен предложить Эрну забрать все 100 дублонов – или тоже отправиться на свидание к акулам (напомним, равенство голосов означает, что предложение провалено), которое долго не продлится. Дон – умный пират и предлагает Эрну забрать всю добычу.

Кэл тоже умен и знает, что именно таким будет финал игры (если до него дойдет, чего сам Кэл надеется любой ценой избежать). Более того, он знает, что ему нечего предложить Эрну – ведь интерес Эрна именно в том, чтобы любыми средствами до этого финала добраться. Впрочем, Кэл может помочь Дону и улучшить его положение – по сравнению с тем, что случится, если Дон останется один на один с Эрном. И Кэл может сделать так, чтобы Дон проголосовал за него, предложив ему один дублон (в этом случае Дон отдаст свой голос за идею Кэла, сам Кэл проголосует за себя, и вместе они составят большинство). Итак, при трех игроках монеты распределяются так: Кэл – 99, Дон – 1, Эрн – 0.

Естественно, Бен понимает все эти калькуляции. Он знает, что не может ничем улучшить положение Кэла, но вот Дону и Эрну он может сделать предложение, от которого те не смогут отказаться. И выглядит все так: Кэлу не достается ничего, Эрн получает 1 монету, Дон – 2, а Бен забирает оставшиеся 97.

И теперь мы переходим к той стадии, когда легко увидеть, как должен действовать Эйб (он – главарь, и он очень опытен в дележе добычи). Эйб предлагает вот что. Он забирает 97 монет, не дает ни гроша Бену (которого не купить ни при каких раскладах), дает 1 монету Кэлу (это лучше, чем 0 монет, а именно столько получит Кэл, если Эйб отправится в плавание и право хода уйдет к Бену); Дон тоже не получает ничего; а Эрну достаются 2 монеты (купить голос Эрна легче, чем голос Дона). Это предложение одобряют трое пиратов, против него выступают двое – и морские разбойники отправляются грабить корабли до тех пор, пока не обмелеют все моря.

Последнее распределение кажется довольно странным. Придем ли мы к нему, если в таком же положении окажутся пять студентов-математиков? А что насчет эксперимента с пятью аспирантами-психологами? Как все эти возможности разрешат они?
Позволено ли игрокам вступать в союзы и заключать сделки? И если так, на что будет похожа игра? Математическое решение всегда предполагает, что все игроки разумны и рациональны – но разумно ли делать такое допущение? Рационально ли это? (Я не раз наблюдал за этой игрой и никогда не видел, чтобы участники делили деньги в соответствии с математическим решением. К чему бы это?) Математическое решение игнорирует важные эмоции: зависть, обиду, злорадство при виде чужих страданий… Могут ли чувства изменить математический расчет?
В любом случае, хотя распределение Эйба – 97, 0, 1, 0, 2 – математически справедливо, я бы посоветовал ему проявить великодушие и предложить сотоварищам-пиратам разделить добычу так: 57, 10, 11, 10, 12 (то есть «накинуть» каждому еще по десятке из своей доли в 97 монет). Есть надежда, что так команда будет довольна и мятежа не произойдет.
И если «Пиратская забава» – версия ультимативной игры для многих игроков – кажется вам странной, то что вы скажете о следующей игре?
Игра 2. Богатый покойник
Умирает старик-богач. У него двое детей – Сэм и Дэйв4. Братья на дух не переносят друг друга. Они уже десять лет не виделись и не общались и только сейчас встречаются в доме отца, чтобы услышать его последнюю волю и прочесть завещание.
Нотариус вскрывает конверт и зачитывает необычный документ. Оказывается, отец оставил сыновьям миллион и десять тысяч долларов – и ряд вариантов того, как те могут делить эти деньги.
Вариант первый: Сэм, старший брат, может взять себе $100, дать младшему брату $1, а остальное раздать на благотворительность (да, это будет очень милосердно!).

Сэм не обязан соглашаться и может передать право дележа младшему брату. Если деньгами распоряжается Дэйв, он забирает $1000, Сэм получает $10, а остальное уходит на благотворительность. Это второй вариант.

Но от такого, при желании, может отказаться и Дэйв – и право владения снова переходит к Сэму, а деньги делят так: Сэм забирает $10 000, отдает Дэйву $100, а остальное… ну, вы поняли.

Впрочем, теперь (да, это вы тоже поняли) Сэм снова не обязан соглашаться. У него есть право отдать «ход» Дэйву, а тому позволено разделить деньги так: забрать себе $100 000, отдать Сэму $1000, а остаток, ставший уже чуть меньше, направить на милосердные дела.

Но и это не вырезано на скрижалях. Дэйв может решить, что позволит Сэму снова делить деньги, но тогда все пройдет так: Сэм заберет $1 млн себе, $10 000 оставит ненавистному брату, а на дела милосердия не пойдет ничего.

И как думаете, что случится? Опять же, разрешить этот вопрос нам поможет обратная индукция. Кто угодно поймет, что игра никогда в жизни не продлится до последнего пятого раунда: Дэйв не позволит Сэму забрать миллион, поскольку это снизит его личную выгоду со $100 000 до $10 000. Сэм это знает и ни за что не позволит игре дойти до четвертого раунда, в котором он получает только $1000 – вместо $10 000, которые достаются ему в третьем раунде. Продолжите сами, и вы увидите: игра не дойдет даже до третьего раунда… да и до второго она тоже не дойдет. Это поражает, но, если предположить, что оба брата принадлежат к одному виду, Homo economicus statisticus (то есть они способны производить расчеты и стремятся к собственной выгоде), игра закончится на первом же раунде: Сэм забирает $100, дает Дэйву $1, а остальная огромная сумма идет на благие дела (плохие намерения могут привести к благому исходу, а братья потом, возможно, обретут награду на небесах). Это математическое решение: $100 для Сэма, $1 для Дэйва и очень много денег на милосердие.
Есть ли в этом логика? Решите сами.
Игра 3. Яд и шоколад
Это довольно простая игра, более известная как «Хрум!» (Chomp!). За ее формулировку с плитками шоколада, которую использую я, мы в долгу перед ныне покойным американским математиком Дэвидом Гейлом. В нее играют на шахматной доске, каждая клеточка которой сделана из шоколада, но при этом крайняя левая клетка содержит смертельный яд. Вот правила.
Игрок, делающий первый ход, ставит отметку X на одной из клеток, выбирая ее по желанию.

После этого все клетки, расположенные и справа, и сверху от клетки с отметкой X, получают такую же отметку.

Теперь очередь второго игрока. Он отмечает какую-либо из клеток, оставшихся свободными, как О. Как только это произойдет, все пустые клетки справа и сверху от нее тоже получают такую отметку.

Потом первый игрок снова ставит отметку X, отчего такую же получают помеченная клетка и все клетки справа и сверху от нее (если таковые есть), а второй игрок ставит очередную отметку O – на выбранную клетку и все клетки справа и сверху от нее (если таковые есть). Игра длится до тех пор, пока кому-либо из игроков не придется выбрать яд, тогда он проигрывает и умирает (конечно же метафорически).
С радостью приглашаю вас сыграть в эту игру на доске 7 × 4 (7 рядов и 4 колонки, или наоборот).
Если играть в эту игру на квадрате (с равным числом рядов и колонок), то есть стратегия, следуя которой игрок, делающий первый ход, всегда побеждает. Сможете ее найти? Возьмите три минуты на размышление.
Решение: Пусть в игру играют Джоан и Джилл. Если Джоан ходит первой, она должна придерживаться следующей стратегии – и непременно одержит победу. На первом ходу она должна выбрать клетку, расположенную справа по диагонали от клетки с пометкой «Яд».

Теперь все, что ей нужно делать, – это симметрично повторять ходы противника; иными словами, делать тот же ход, что и Джилл, только на противоположной стороне доски. Картинка, приведенная ниже, объяснит это лучше всяких слов.

То, как победить в этой игре, теперь должно быть совершенно ясно.
Все становится намного сложнее, если играть на прямоугольнике. Но и тогда можно доказать, что у игрока, делающего первый ход, есть выигрышная стратегия, проблема только в том, что доказательство не определяет ее точно. В математике такой вид доказательств называют «неконструктивным доказательством существования».
Игра 4. Старики не играют!
Одним из самых ценных навыков, которые я получил в средней школе в родном Вильнюсе, столице Литвы, было умение играть в стратегические игры на листочке бумаги, в классе, тайком от учителей. Мне очень нравилась «бесконечная» версия «крестиков-ноликов»: они часто помогали мне выжить на скучных уроках.
Думаю, большинству знакома классическая версия игры с полем 3 × 3. Шестилеток она приводит в восторг. Дети постарше и взрослые, как правило, сводят все поединки вничью, если только один из игроков не уснет на середине партии (это имеет смысл, игра все-таки скучная). Впрочем, в «бесконечной» версии игра проходит на поле с бесконечной решеткой, а цель – выстроить последовательность из пяти крестиков или ноликов, которая, как и в обычной игре, может быть горизонтальной, вертикальной и диагональной. Игроки по очереди ставят на клетки поля X или O (по предварительному соглашению), и первый, кому удастся сформировать «пятерку», побеждает.

На рисунке слева игрок, выбравший «крестики», уже победил.
На рисунке справа ход игрока, выбравшего «нолики», – но он ничем не может помешать противнику одержать победу. Видите почему?
В те далекие школьные дни я верил в то, что сам изобрел эту игру, но со временем, в должный час, понял, что я далек от правды. Оказалось, сходная игра под названием гомоку была на протяжении многих лет очень популярна в Японии и Вьетнаме. «Го» в переводе с японского означает «пять». Хотя в гомоку иногда играют на той же доске, что и в древнюю игру го, эти две игры не связаны. Го – старинная китайская игра, она даже упоминается в «Анналах» Конфуция, но на Западе с ней познакомились благодаря японцам, и потому она известна под японским названием.
Пусть я и обрел немалый опыт, играя в «бесконечную» версию «крестиков-ноликов» на нескончаемых уроках или переменах (на переменах веселья меньше, потому что играть разрешено), я все еще не уверен ни в том, есть ли в ней оптимальная стратегия для игрока, который начинает игру (игрок, выбравший «крестики»), ни в том, всегда ли игра заканчивается вничью (то есть не заканчивается никогда), если в нее играют двое сильных игроков. Впрочем, я готов даже заключить пари на то, что выигрышная стратегия существует. Когда я выйду на пенсию и у меня будет много свободного времени, я постараюсь найти ее для игрока, делающего первый ход.
И все-таки, если уж быть честным до конца, я должен сказать, что не играл в «крестики-нолики» уже несколько десятков лет и вспомнил о них, только когда писал эту книгу. А поскольку мои планы на то, чтобы вновь уделить внимание стратегическим аспектам этой игры, рассчитаны на очень долгий срок, прошу – будьте первыми, найдите эту стратегию и сберегите мне время и силы.
Игра 5. У соседа конверт зеленее
Представьте такую ситуацию. Мне дают два конверта с наличными и говорят, что в одном из них денег в два раза больше, чем в другом. Я могу выбрать себе любой, какой хочу, и забрать его.
Предположим, я выбираю конверт, открываю его и нахожу внутри $1000. Поначалу я очень доволен, но потом начинаю гадать: а что же было в другом конверте, который я не выбрал? Конечно, я не знаю. Там могло быть $2000, и тогда я выбрал плохо, или могло быть $500. Уверен, вы понимаете, в чем проблема. Я думаю, думаю, и тут: «Несчастный я человек! Ведь в том, другом конверте потенциальных денег в среднем больше, чем у меня в руках! В конце концов, там либо $2000, либо $500, шансы равны, в среднем это $1250, а это больше, чем $1000. Я свою математику знаю!»
По правде, что бы я ни обнаружил в своем конверте, подтвердится закон Мерфи: «Все, что может пойти не так, пойдет не так». Другой конверт в среднем всегда будет лучше моего. Если я найду в своем конверте $400, в другом будет либо $800, либо $200, а значит, среднее – $500. При таком образе мыслей я никогда не смогу выбрать верно. Выгода в оставшемся конверте всегда будет на 25 % больше моей. Так может, лучше переменить решение – если мне предложат такой вариант, прежде чем я смогу увидеть, что там, в другом конверте? Если я сделаю так, то начну «бесконечную петлю». Но почему такой простой выбор стал столь сложным?
История, которую я вам рассказал, – это знаменитый парадокс, и впервые его представил бельгийский математик Морис Крайчик (1882–1957). Впрочем, его история была о галстуках. Двое спорили о том, чей галстук лучше, и попросили третьего, ведущего галстучного эксперта Бельгии, выступить в роли судьи. Тот согласился, но при условии, что победитель отдаст свой галстук проигравшему в качестве утешительного приза. Владельцы недолго думая согласились, ведь каждый решил: «Не знаю, лучше ли мой галстук. Я могу его лишиться, но могу и приобрести лучший, так что эта игра мне на пользу, как и пари». Как мог каждый из соперников поверить в то, что преимущество на его стороне?
В 1953 г. Крайчик предложил иную версию истории, задействовав в ней двух других поссорившихся бельгийцев. Они галстуков уже не носили, потому что были так набиты бельгийским шоколадом, что едва могли дышать. Вместо этого они спорили о том, сколько денег у другого в кошельке, и решили, что тот, кто окажется богаче и счастливее, отдаст свой бумажник бедному противнику. А если все закончится ничьей, оба вернутся к своим шоколадкам.
Опять же, каждому казалось, что преимущество на его стороне. Если случится потерпеть поражение – что же, отдавать все равно придется меньше, чем может принести победа. Что же это – великая игра или нечто иное? Попытайтесь сыграть в нее на улице со случайными прохожими и посмотрите, что будет. В 1982 г. Мартин Гарднер сделал эту историю популярной в своей книге «А ну-ка, догадайся»55 – одной из самых лучших, самых простых и самых увлекательных из всех самых лучших, самых простых и самых увлекательных книг, когда-либо написанных о проницательности и смекалке.
Барри Нейлбаф (профессор менеджмента на кафедре Милтона Стейнбаха в Йельской школе менеджмента), ведущий специалист по теории игр, в своей статье, опубликованной в 1989 г., предложил версию этой истории с конвертом. Возможно, вы удивитесь, но даже сегодня у этой игры нет решения, с которым были бы единодушно согласны все статистики.
Одно из предлагаемых решений подразумевает, что мы противопоставляем среднее геометрическое и среднее арифметическое. Среднее геометрическое – это квадратный корень из произведения двух чисел. Например, среднее геометрическое 4 и 9 равняется квадратному корню из их произведения (результата перемножения обоих чисел) – а именно 6. Итак, если мы нашли в своем конверте X долларов и знаем, что другой содержал 2X или ½X, то среднее геометрическое другого конверта будет равняться X – и в точности соответствовать тому, что попало к нам в руки. Логика применения среднего геометрического опирается на тот факт, что мы говорим не о сложении, а об умножении (вдвое больше). Если бы мы сказали, что в одном конверте на $10 больше, чем в другом, то использовали бы среднее арифметическое, нашли бы его, и никакого парадокса бы не возникло, ведь в нашем конверте содержится X, а в другом – X + 10 или X – 10, и среднее количество денег в конверте, который мы не выбрали, равняется X.
Студенты, изучающие теорию вероятностей, сказали бы: «Вам не найти равномерное распределение для множества рациональных чисел». Впечатляет?
Если вы не понимаете, что это значит, превосходно! Лучшая версия этого парадокса не имеет никакого отношения к вероятностям. Она появляется в книге «Сатана, Кантор и бесконечность», прекрасном произведении (с прекрасным названием, правда?) Рэймонда Смаллиана, американского математика, философа, классика-пианиста и фокусника6. Смаллиан представляет две версии парадокса:
1. Если в вашем конверте B банкнот, то вы либо получите B, либо потеряете ½B, заменив этот конверт другим. Следовательно, вам следует их поменять.
2. Если конверты содержат соответственно С и 2С, а вы решаете заменить один на другой, то вы либо получите С, либо потеряете С, так что шансы равны и вы можете получить столько же, сколько рискуете потерять.
Вы в растерянности? Я тоже.
В любом случае многие пессимистично заявляют, что здесь нет никакого парадокса, просто такова жизнь, и не имеет значения, что вы сделаете или куда пойдете: лучше всегда будет там, где нас нет. Например, если вы в браке – возможно, вам следовало никогда в него не вступать. В конце концов, как писал Чехов: «Если боитесь одиночества, то не женитесь». И все же, если решите остаться в одиночестве, вы снова неправы. В Библии слова «не хорошо» впервые встречаются в Книге Бытия: «…не хорошо быть человеку одному…» (2: 18). Это не я сказал, а Господь Бог.
Игра 6. Золотые шары
«Золотые шары» (Golden Balls) – британское телевизионное шоу, выходившее в эфир с 2007 по 2009 г. Не будем вдаваться в детали правил и ходов, но на последней стадии игры двое оставшихся игроков должны договориться о том, как разделить между собой определенную сумму денег. У каждого игрока – два шара с наклейками: на одном написано SPLIT («Дележ»), на другом – STEAL («Кража»). Если оба решают выбрать «Дележ», деньги делят поровну; если оба выбирают «Кражу», то остаются ни с чем; а если их выбор не совпадает, тогда приз забирает тот, кто выбрал «Кражу». Сперва игроки могут обсудить то, как им поступить, – и только потом делать выбор.
Эта история основана на знаменитой игре «Сороконожка», которую впервые представил в 1981 г. Роберт Розенталь.
[Закрыть]
Выходила на русском языке в изд-ве «Мир» в 1984 г. – Примеч. ред.
[Закрыть]
С размышлениями Мартина Гарднера об игре 5 можно ознакомиться по книге: Gardner Martin. Aha! Gotcha: Paradoxes to Puzzle and Delight. W. H. Freeman & Co. Ltd, New York, 1982.
[Закрыть]
Smullyan Raymond M. Satan, Cantor, and Infinity: And Other Mind-Boggling Puzzles. Alfred A. Knopf, New York, 1992; Dover Publications, 2009.
[Закрыть]
Pulsuz fraqment bitdi.