Yalnız Litres-də oxuyun

Kitab fayl olaraq yüklənə bilməz, yalnız mobil tətbiq və ya onlayn olaraq veb saytımızda oxuna bilər.

Основной контент книги Kernel Methods for Remote Sensing Data Analysis
Mətn PDF

Həcm 444 səhifə

0+

Kernel Methods for Remote Sensing Data Analysis

müəlliflər
lorenzo bruzzone,
gustau camps-valls
Yalnız Litres-də oxuyun

Kitab fayl olaraq yüklənə bilməz, yalnız mobil tətbiq və ya onlayn olaraq veb saytımızda oxuna bilər.

316,20 ₼
10% endirim hədiyyə edin
Bu kitabı tövsiyə edin və dostunuzun alışından 31,63 ₼ əldə edin.

Kitab haqqında

Kernel methods have long been established as effective techniques in the framework of machine learning and pattern recognition, and have now become the standard approach to many remote sensing applications. With algorithms that combine statistics and geometry, kernel methods have proven successful across many different domains related to the analysis of images of the Earth acquired from airborne and satellite sensors, including natural resource control, detection and monitoring of anthropic infrastructures (e.g. urban areas), agriculture inventorying, disaster prevention and damage assessment, and anomaly and target detection. Presenting the theoretical foundations of kernel methods (KMs) relevant to the remote sensing domain, this book serves as a practical guide to the design and implementation of these methods. Five distinct parts present state-of-the-art research related to remote sensing based on the recent advances in kernel methods, analysing the related methodological and practical challenges: Part I introduces the key concepts of machine learning for remote sensing, and the theoretical and practical foundations of kernel methods. Part II explores supervised image classification including Super Vector Machines (SVMs), kernel discriminant analysis, multi-temporal image classification, target detection with kernels, and Support Vector Data Description (SVDD) algorithms for anomaly detection. Part III looks at semi-supervised classification with transductive SVM approaches for hyperspectral image classification and kernel mean data classification. Part IV examines regression and model inversion, including the concept of a kernel unmixing algorithm for hyperspectral imagery, the theory and methods for quantitative remote sensing inverse problems with kernel-based equations, kernel-based BRDF (Bidirectional Reflectance Distribution Function), and temperature retrieval KMs. Part V deals with kernel-based feature extraction and provides a review of the principles of several multivariate analysis methods and their kernel extensions. This book is aimed at engineers, scientists and researchers involved in remote sensing data processing, and also those working within machine learning and pattern recognition.

Janr və etiketlər

Daxil olun, kitabı qiymətləndirmək və rəy bildirmək üçün
Kitab Lorenzo Bruzzone, Gustau Camps-Valls «Kernel Methods for Remote Sensing Data Analysis» — saytda onlayn oxuyun. Şərh və rəylərinizi qeyd edin, sevimlilərinizi seçin.
Yaş həddi:
0+
Litresdə buraxılış tarixi:
21 avqust 2019
Həcm:
444 səh.
ISBN:
9780470749005
Ümumi ölçü:
6.9 МБ
Səhifələrin ümumi sayı:
444
Müəllif hüququ sahibi:
John Wiley & Sons Limited