Читайте только на Литрес

Kitab fayl olaraq yüklənə bilməz, yalnız mobil tətbiq və ya onlayn olaraq veb saytımızda oxuna bilər.

Основной контент книги Reinforcement Learning and Stochastic Optimization
Mətn PDF

Kitabın müddəti 1138 səhifə

0+

Reinforcement Learning and Stochastic Optimization

A Unified Framework for Sequential Decisions
Читайте только на Литрес

Kitab fayl olaraq yüklənə bilməz, yalnız mobil tətbiq və ya onlayn olaraq veb saytımızda oxuna bilər.

288,26 ₼
10% endirim hədiyyə edin
Bu kitabı tövsiyə edin və dostunuzun alışından 28,83 ₼ əldə edin.

Kitab haqqında

REINFORCEMENT LEARNING AND STOCHASTIC OPTIMIZATION Clearing the jungle of stochastic optimization Sequential decision problems, which consist of “decision, information, decision, information,” are ubiquitous, spanning virtually every human activity ranging from business applications, health (personal and public health, and medical decision making), energy, the sciences, all fields of engineering, finance, and e-commerce. The diversity of applications attracted the attention of at least 15 distinct fields of research, using eight distinct notational systems which produced a vast array of analytical tools. A byproduct is that powerful tools developed in one community may be unknown to other communities. Reinforcement Learning and Stochastic Optimization offers a single canonical framework that can model any sequential decision problem using five core components: state variables, decision variables, exogenous information variables, transition function, and objective function. This book highlights twelve types of uncertainty that might enter any model and pulls together the diverse set of methods for making decisions, known as policies, into four fundamental classes that span every method suggested in the academic literature or used in practice. Reinforcement Learning and Stochastic Optimization is the first book to provide a balanced treatment of the different methods for modeling and solving sequential decision problems, following the style used by most books on machine learning, optimization, and simulation. The presentation is designed for readers with a course in probability and statistics, and an interest in modeling and applications. Linear programming is occasionally used for specific problem classes. The book is designed for readers who are new to the field, as well as those with some background in optimization under uncertainty. Throughout this book, readers will find references to over 100 different applications, spanning pure learning problems, dynamic resource allocation problems, general state-dependent problems, and hybrid learning/resource allocation problems such as those that arose in the COVID pandemic. There are 370 exercises, organized into seven groups, ranging from review questions, modeling, computation, problem solving, theory, programming exercises and a “diary problem” that a reader chooses at the beginning of the book, and which is used as a basis for questions throughout the rest of the book.

Janr və etiketlər

Daxil olun, kitabı qiymətləndirmək və rəy bildirmək üçün
Kitab Warren B. Powell «Reinforcement Learning and Stochastic Optimization» — saytda onlayn oxuyun. Şərh və rəylərinizi qeyd edin, sevimlilərinizi seçin.
Yaş həddi:
0+
Həcm:
1138 səh.
ISBN:
9781119815044
Ümumi ölçü:
31 МБ
Səhifələrin ümumi sayı:
1138
Naşir:
Müəllif hüququ sahibi:
John Wiley & Sons Limited
Audio
Средний рейтинг 4,2 на основе 927 оценок
Audio
Средний рейтинг 4,6 на основе 997 оценок
Audio
Средний рейтинг 4,8 на основе 5146 оценок
Mətn, audio format mövcuddur
Средний рейтинг 4,7 на основе 7092 оценок
Mətn
Средний рейтинг 4,9 на основе 420 оценок
Audio
Средний рейтинг 4,8 на основе 26 оценок
Mətn, audio format mövcuddur
Средний рейтинг 4,9 на основе 657 оценок
Audio
Средний рейтинг 4,7 на основе 153 оценок
Mətn, audio format mövcuddur
Средний рейтинг 4,9 на основе 77 оценок
Mətn PDF
Средний рейтинг 0 на основе 0 оценок